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Some Properties of a Class of Band Matrices 

By W. D. Hoskins and P. J. Ponzo 

Abstract. Let A(2r + 1, n) denote the n X n band matrix, of bandwidth 2r + 1, with the 
binomial coefficients in the expansion of (x - l)2r as the elements in each row and column. 
Using the fact that the rows of A(2r + 1, ni) provide the coefficients for the 2rth central 
difference, a number of properties of A(2r + 1, ni) are obtained for all positive integers 
r and n. These include obtaining explicit formulas for det A(2r + 1, n), A-1(2r + 1, n), 
IIA-1(2r + 1, n)jj,,, and an upper triangular matrix U such that A(2r + 1, ,t)U is lower 
triangular. 

1. Introduction. We consider the set of band-diagonal matrices of bandwidth 
2r + 1, with the binomial coefficients in the expansion of (x - 1)2r displayed sym- 
metrically about the diagonal in each row and column. If A(2r + 1, n) denotes the 
nth order member of this set, then, for example 

6 -4 1 

-4 6 -4 1 

A(5,n)== 1 -4 6 -4 1 

1 -4 6 

Such matrices occur quite frequently in a variety of contexts, [1]-[3]. It is known 
[4], for the tridiagonal matrix, that 

det I A(3, n)I n + 1 

and 

jA '(3, n)Vl ' (ii + 1)2/8, 

with equality when n is odd. We will obtain, below, these and other properties of 
A(2r + 1, n), for general r. 

2. In what follows, we use A to denote A(2r + 1, /) unless othierwise specified. 
If x is an arbitrary n-vector with coinponents x(i) (i = l(l)u), then we may extend 

the range of i and define x(i) = O for i = 0, -1, -2, , -r + l and for i = ni + 1, 
n + 2, -. , n + r. With this extenision, Ax is an n-vector whose components are 
precisely 52'x(i), for i = 1(1)/z, since the rows of A provide the coefficients for the 
2rth central difference. We us- this notion to transform A to a lower triangular matrix. 
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We consider, for any integer j _ 1, 

i(i?) (i + r )(I + I - i)(I + 2 - i) (j + r- -i) 

(i?r - ](?r- 1-i] 

Then, oi(i) is a polynomial of degree 2r - 1 in the variable i, with oi(i) = 0 for i = 

0, -1, , -r + land i = j + 1,j + 2, , + r -1. 
We define an n-vector ui with components 

(2) ui(i) = 
4i(i) 

for i < j + r, 

= 0 for i ? i + r. 

Then, uj(i) is the polynomial 4 (i) (of degree 2r - 1) for i < j + r, so that 62"u,(i) 
= 0 for i = 1, 2, * *, j - 1. Hence, Aui has nonzero components only for i = j, 
j + 1, * , n. If U denotes the upper triangular matrix whose jth column is u;, as 
given by (2), then AU = L is lower triangular. We summarize in 

THEOREM 1. If A(2r + 1, n) = ia } where 

aii __ )r4 2r 

r+ i [ 

and U = iu where 

= [i + Ij [1 + 
- 

= 0 fori > j, 

then AU = L with L lower triangular. 
We will need the following lemmas. 
LEMMA 1. If AU = L and 

(i) A is an arbitrary Hermitian matrix (i.e. A* = A where A* is the conjugate 
transpose), 

(ii) U is upper triangular, 
(iii) L is lower triangular, 

then L* U = D, where D is a real, diagonal matrix. 
The proof follows immediately on observing that any Hermitian matrix can be 

factorized into the form R*D3R with fD a diagonal matrix. 
LEMMA 2. If L and U are the matrices of Theorem 1, then LT U = D, a real diagonal 

matrix wvith 

D>> = (I)[k +2r 1 [k + r- 1} = (l)r k + 2r- 1] [2r] 

Proof. Since D = LTU, from Theorem 1 and Lemma 1, then Dkk = IkAUkk. From 
(2), we have ukk = kk(k) and, from Tlheorem 1, Akk = 62rUkk =-qkk(k + r). Substituting 
for X, as given by (1), we obtain 
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Dkk (4k+ l [ + r [- 1} 

= (-1)r{k? 1} {k+ 2r- 1 

where (17) = (- )1f . This expression for Dkk can be written more simply as 

Dkk = (_l)r{[k + 2r 1I [2r3 

THEOREM 2. 

det A(2r + 1, n) = fi{,kk r} 
IC-, { k(k)} 

Proof. From AU = L, we obtain 

n /n 

det A = det L/det U = fl Ikk U Ukk. 
k31 k-1 

Substituting Ukk = 4k(k) and 4,,= -4k(k + r) gives the required result. 
The above expression for det A simplifies considerably. It is perhaps more reveal- 

ing to write it out for the first few values of r. 

det A(3, n) = n + 1, 

(n + l)(n + 2) (n + 3) 
d et A(5, n)= 1 22 

(n + l)(n + 2)2(n + 3)3(n + 4)2(n + 5) det A(7. n) = ~ 2 * 3 2 

1 

2 
33 42 

5 

In general, det A(2r + 1, n) is a polynomial in n, of degree r2, with zeros at n = 
-1,-2, ,-2r + 1. 

We turn now to the computation of IAI A We will need the following lemmas. 
LEMMA 3. If the conditions of Lemma 1 are satisfied, then A-1'= UD-1U*, if the 

inverse exists. 
Proof. From Lemma 1, A U = L = (U*)-'D. Hence, A = (U*)- 1DU-1 and A-' 

UD-'U*. 
LEMMA 4. If e denotes the n-vector, all of whose components are unity, and D, U are* 

the matrices of Lemma 2, then e is an eigenvector of D- U*. More specifically, D-1 U*e 
= Xe with X = (-l)r/(2r). 

Proof. The kth component of D-1U*e is 

((Dkk) D l (ikk) i [ I 1 [ -Ij 

where the summation is the kth column sum of U. 
From [5], we have the identity 
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(4) 
k +Q r 2) i+ rl = k + 2r - I0 

Using (4), slightly modified, we may sum the series in (3) to obtain the kth component 
in the form (l/Dkk)(k+2r-l). Substituting for Dkk, from Lemma 2, gives (-l)r/('), 
which, for k = l(l)n, is just the kth component of Xe, with X = (-l)r/(2). This 
establishes the result. 

THEOREM 3. The rowt,-sums of A` are given by 

( 
r 

)(ni ) 

Si = (- 4)r _r __) 
r for j = 1(1)n. 

Proof If ei denotes the unit n-vector with 1 in the jth position and, as in Lemma 
4, e e=, + e2 + * + en, then the jth row-sum of A` can be written as Si = 

(e )A- le. 
Substituting for A` from Lemma 3 (and using Lemma 4) gives Si = e 

where X (-1)r/Q). But (e )TUe is just the jth row-sum of U, which is >j. 4f(j). 
Substituting for 4,(j) gives 

Si =(-1j) 1 
r 

j +r forj= I(l)n. 

It is a simple matter to show, by induction on n, that 
n {i- j + r ] = n [ ;+ r 

which gives the required result. 
THEOREM 4. 

iIA--1(2r + 1, n)0II - 11k (n + 2k - )2 for n odd, 
2 2r (2r)! 

IL (n + 2k - 2)2 In + 2r frn\ vn 
22r(2r)! ( n ) for neven. 

Proof. From Theorem 3 and the definition of the infinity-norm, IIA-111 = 

maxilSiI. 
But Si is a polynomial in j, of degree 2r, with zeros at j = 0, -1, ,-r + 1 

and j = n + 1, n + 2, * *, n + r. Application of Rolle's theorem guarantees that 

dS,/dj vanishes just once between successive zeros. In particular, dSi/dj vanishes 
precisely once in 0 < j < n + 1. However, Si is symmetric about j = (n + 1)/2, since 
S"+I i = Si. Hence, for 0 < j < n + 1, ISiI attains an absolute maximum at j= 
(n + 1)/2. If (n + 1)/2 is an integer (i.e., n is odd), then 1IA-'11, = IS,l with j = 

(n + 1)/2. If n is even, then ! A -'I = ISA with j = n/2 (or 1 + n/2). Hence, 

11A 1K = [(n- 1)/2 + r2 2r forn odd, 
I A IX= 1 +r 1 + / orneenrJ 

1~ K 2+ [2~jfor n even. 
r~~~~~ 
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Expanding the binomial coefficients and rearranging somewhat gives the state- 
ment of the theorem. 

We turn to the problem of determining A- '(2r + 1, n). 
From Lemma 3, we have A` = UD- lUT so that 

it 

{ A ' 
= E ikUik 

k=1 Dkk 

Substituting for u (from Theorem 1) and Dkk (from Lemma 2) gives, for i > j, 
LEMMA 5. 

{ } ij, = ( l)~ L + r - i] [I + - 1 En (k+r-l-i (k+r--j) 

Here, we have obtained the elements below, and on the main diagonal. The remaining 
elements of A` are obtained by symmetry. 

It is instructive to obtain A` somewhat differently, as follows. 
Let 

X(X2 - 12)(x2 - 22) * x - (r - 1)2] 

r(r2 _ 12) 
... 

[r2 (r- 1)2] 

so thatp(x) = Oat x = 0, 41, 42, , ?(r - 1), and p(4r) = 41. Ifx is an in- 
teger, we also have 

(S) p(x) =| 

We now define, for any j > 1, the (unique) polynomial in i of degree (2r- 1), 
fj(i), which satisfies 

(a) f1(i) = 0 at i = 0, -1, -2, ..,-r + 1, 
(6) 

(b) f1(i) + p(i - j) = 0 at i = n + 1, n + 2, ... , n + r. 

Then the n-vector v; with components 

vj(i) =fj(i),i j, 

is such that v1(i) = O for i = 0, -1, -2, , -r + 1 and i = n + 1, n + 2, 

n + r, due to (6). Hence, the components of Av3 are precisely 62,vi(i) for i = l(l)n. 
But v1(i) agrees with the (2r - l)st degree polynomial f,(i), at the integer values 

of i in i < j + r - I (using (7) and the fact that p(i - j) vanishes at i = j + 1, 
j + 2, ... j + r - 1), hence, 62',V(i) = O at i = 1,2, ... j- 1. 

Similarly, v1(i) agrees with the (2r - l)st degree polynomial f,(i) + p(i - j) 
at the integer values of i in i > j - r + 1, so that 62rvi(i) = 0 at i = j + 
1, j + 2, , n. Indeed, only the jth component of Av, is nonzero. We have 62rVi(j) = 

[62rfj(I)] + p(r) = 1, since o Tf0 = 0 and p(r) = 1. We conclude that v; is precisely the 
jth column of A-'. 

We summarize in 
THEOREM 5. If p and f are defined as in (5) and (6), then 
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A-'(2r + 1, n) = 

where 

ajj = f,(i), i< j, 

= f,(i)+p(i-j) i> j. 

In the above theorem, we note that the columns of A-' are pairs of polynomials, 
in i, of degree 2r - 1, joined at the diagonal. Because of symmetry, the rows of A-1 
have the same property (regarded as polynomials in j). Further, since A is centrosym- 
metric, then A-' is centrosymmetric. 

If 

LJOi = i(i + 1 )(i + 2) ..(i + r - I ) 

then the proceduire described in Theorem 5 leads to 

{A 1(2r + 1, n) + I i)(r - 2 i) (t + r 

f F, - iY--k l- Lr()] ?L+ k + r- 1)! (n + k)! 1 
k=O L k Li + kj ( + k -r)! (n + k + r)!J 

for i> j. 

The first few inverses are given by (for i > j) 

{A 1(3, n) (1 + ) - 
i)j 

A-'(5, n) i (n + 1 - i)(n + 2 - i)j]( + 1) 
1! 3! (n + 1)(n + 2)(n + 3) 

[(i + 1)(j - 1)(n + 3) - i(j + 2)(ni + 1)], 

A -'(7, n) (n + 1 - i)(n + 2 - i)(n + 3 - i)j(j + 1)(j + 2) 
2! 5! (n- + 1)(ni + 2)(n + 3)(n + 4)(n + 5) 

[(i + 1)(i + 2)(j - 2)(j- 1)(n + 4)(n + 5) 

- 2i(i + 2)(j - 1)(j + 3)(n + 1)(n + 5) 

+ i(i + 1)(j + 3)(j + 4)(n + 1)(n + 2)]. 

Reference to Lemma 5 provides a series of interesting identities. 
Although the problem of determining the eigenvalues and eigenvectors of 

A(2r + 1, n) is far from solved (except for r = 1), we might mention a few relevant 
facts. 

For matrices of even order, we can write 

A(2r + 1, n) B, 

A (2r + 1, 2 n) = * 
. 

- 
T * 

Bn A(2r + 1). 1) 
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If Pn is the matrix whose 1st column is en, and whose jth column (j = 2(1)n) is 
, then, the characteristic polynomial associated with A(2r + 1, 2n) can be factored, 

as described in [6]: 

det IA(2r + 1, 2n) - XII 

= det IA(2r + 1, n) + BnPn - XII det IA(2r + 1, n) - BnPn - XII. 

For matrices of odd order, we can write 

A (2r + I, n) v C. . . . . . . . . . . . . . . . . . . . 

v T d vT P 
A(2r + 1, 2n + 1) = I 

Cn * Pn,v A(2r + 1, n) 

The characteristic polynomial now has the factorized form [6]: 

det I A(2r + 1, 2n + 1) - XII = K(X) det I A(2r + 1, n) - CnPn- XII, 

where K(X) is the characteristic polynomial of 

L A(2r + 1, n) 

*.V 

i + C. P. 

L 2vT d I 
The above factorization is a result of the centrosymmetry of A(2r + 1, n). This 

symmetry is reflected in the eigenvectors. We show this as follows. 
With Pn defined as above, and A used to denote A(2r + 1, n), then PnA = APn 

(a result of the centrosymmetry of A). But, if x is an eigenvector of A with eigenvalue 
X, so Ax = Xx, then PnAx = APnx = XPnx. Hence, Pnx is also an eigenvector of A, 
with the same eigenvalue X. Consequently, Pnx = ax for some scalar a (since all 
eigenvectors of A which belong to the same eigenvalue are scalar multiples of each 
other). Thus, x is also an eigenvector of Pn. But all eigenvectors of P, have either even 
or odd symmetry about the midpoint. That is, 

(7) either x(n - i + 1) = x(i), i = (1)n. 

or x(n - i + 1) = -x(i), 

We state the above result in 
LEMMA 6. All eigenvectors of A(2r + 1, n) satisfy (7). 
That is, eigenvectors of A(2r + 1, 2n) have the form 

v 

Further, eigenvectors of A(2r + 1, 2n + 1) have the form: 
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!v tv 
0 O or c 

i ! 
-Pnv I PnlV 

The ease with which thie properties of this special class of matrices has been an- 
alysed suggests that fLurther useful work remains to be done on the determination of 
corresponding results for block mnatrices with special structures. 
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